Subjek Jurnal :
The Effects of
Gold and Silver Nanoparticles on Choline Estrase and Monoamino Oxidase Enzymes Activities
Link Jurnal : file:///C:/Users/Gicoza/Downloads/13411-40815-1-SM.pdf
Inti Pembahasan
·
Pembahasan
Nanopartikel emas dan perak koloid
·
Efek
dari mas dan perak nanopartikel dipelajari pada kegiatan kolin esterase (ChE) dan
monoaminooksidase (MAO) enzim dalam serum
Metode Yang Digunakan
Metode yang digunakan
pada jurnal ini adalah metode Ellman pada kegiatan acetylcholinesterase
dan metode Cohen pada kegiatan Mono aktivitas oksidase amino Prinsip metode ini
pengukuran benzaldehida yang diperoleh reaksi yang diserap pada panjang
gelombang 242 nm setelah ekstraksi denga sikloheksana.
Kelebihan Metode
·
Menentukan
nilai parameter kisi yang teliti
·
Metode
perhitungan yang lebih akurat
·
Ketika
kita ingin mengukur cenderung bersifat stabil
Kekurangan Metode
·
Sulitnya
menentukan rentang waktu pemberian tes
Kegiatan Mono
aktivitas oksidase amino
Kegiatan
MAO diukur dalam serum manusia dengan menggunakan metode yang sama dengan
mengganti 750 uL MAO penyangga solusi dengan 500 mL MAO penyangga 250 uL
berbagai konsentrasi nanopartikel.
Kegiatan
Acetylcholinesterase
Prosedur
pengujian dijelaskan dalam tabel ini
Sumber
Pyatenko, M. Yamaguchi,
& M. Suzuki. (2009). Mechanisms of Size Reduction of Colloidal Silver and
Gold Nanoparticles Irradiated by, Nd: YAG Laser. J. Phys. Chem., 113,
9078–9085. Balgiz W.kamas. (2001). M.sc. thesis, college of science, Al-Mustansirya
university. Ballantyne B., & Marrs T.C. (1992). clinical and experimental
toxicology of organophosphatase and carbamates Butteworth-Heinemann. Oxford.
Bhupendra Chudasama. Anjana K.Vala., Nidhi Andhariya.R.V.Mehta., &
R.V.Updhyay. (2010). Highly bacterial resistant silver nanoparticles:synthesis
and antibacterial activities, J.Nanopat Res., 10, January. Brigger, I., C.
Dubernet, & P. Couvreur. (2002). Nanoparticles in cancer therapy and
diagnosis Adv. Drug Delivery. Rev.54:631-651C.W.Abell, & S. W. Kwan.
(2001). molecular characterization of monoamine oxidases A and B, Prog.Nucleic
acid Res.Mol.Biol., 65, 129-156. C. Binda, P. N. Vision, F. Hubalek, D. E.
Edmondson, & A. Matteri. (2002). Structure of human monoamine oxidase B, a
drug target for the treatment of neurological disorders, Nat. struct. Biol., 9,
1-5. http://dx.doi.org/10.1038/nsb0102-1 www.ccsenet.org/ijc International
Journal of Chemistry Vol. 3, No. 4; December 2011 Published by Canadian Center
of Science and Education 65 Ellman G.L., Courtney K.P., Andres V., &
Feather Stone R.M. (1961). Biochem. Pharmacol, Vol.7, pp. 88-91.
http://dx.doi.org/10.1016/0006-2952(61)90145-9 F. Mafune, J. Kohno, Y. Takeda,
& T. Kondow. (2002). Full Physical Preparation of Size-Selected Gold
Nanoparticles in Solution: Laser Ablation and Laser-Induced Size Control.
American Chemical Society., 106, 7575-7578. Hirsch LR, Stafford RJ, Bankson JA,
Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, & West JL. (2003).
Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic
resonance guidance. PNAS, 100, 13549-13554.
http://dx.doi.org/10.1073/pnas.2232479100 Huang YJ, Huang Y, Baldassarre H,
Wang B, Lazaris A, Leduc M, Bilodeau AS, Bellemare A, Côté M, Herskovits P,
Touati M, Turcotte C, Valeanu L, Lemée N, Wilgus H, Bégin I, Bhatia B, Rao K,
Neveu N, Brochu E, Pierson J, Hockley DK, Cerasoli DM, Lenz DE, Karatzas CN,
& Langermann S. (August 2007). Recombinant human butyrylcholinesterase from
milk of transgenic animals to protect against organophosphate poisoning. Proc.
Natl. Acad. Sci., U.S.A., 104(34), 13603-8.
http://dx.doi.org/10.1073/pnas.0702756104 J.L. Elechiguerra, J.L. Burt, &
J.R. Morones. (2005). Interaction of silver nanoparticles with HIV-I. Journal
of Nanobiotechnology, 6(3), 1-10. Mansour M. Mahmmed. (2000). M.Sc. thesis,
college of science, Al- Mustansiriya University. M. Charles, J.R. Mcewen, &
J.D. cohen. (1963). J.Lab and Clin. Med, 62, 766. Moussa B H Youdim1, & Y S
Bakhle. (2006). Monoamine oxidase: isoforms and inhibitors in Parkinson’s
disease and depressive illness. Br J Pharmacol. January, 147(S1), S287–S296.
M.P. Kutyreva, E.P. Medyntseva, et al. (2001). Kinetic parameters of choline
estrase catalyzed hydrolysis in the presence of the antigen-antibody immune
complex. Russian Journal of general chemistry, 71(1), 329-338. M. Raffi. F.
Hussain, T. M. Bhatti, J. I. Akter, A. Hameed, & M. M. Hasan. (2008).
Antibacterial Characterization of Silver Nanoparticles against E.Coli
ATCC-15224. J.Mater. Sci. Technol., 24(2), 192-196. Mulvaney P. (1996). Surface
plasmon spectroscopy of nanosized metal particles. Langmuir, 12, 788-800.
http://dx.doi.org/10.1021/la9502711 Nam Jm, Thaxton CS, & Mirkin CA.
(2003). Nanoparticle-based bio-bar codes for the ultrasensitive detection of
proteins. Science, 301, 184-16. N.V. Tarasenko, A.V. Butsen, E.A. Nevar, &
N.A. Savastenko. (2006). Synthesis of nanosized particles during laser ablation
of gold in water. Applied Surface Science, 252, 4439–4444.
http://dx.doi.org/10.1016/j.apsusc.2005.07.150 O.R. Musaev, A.E. Midgley, J.M.
Wrobel, & M.B. Kruger. (2010) Laser ablation of alumina in water. Chemical
Physics Letters, 487, 81–83. http://dx.doi.org/10.1016/j.cplett.2010.01.011
P.H.Seeburg, R. Silvestri, G.La Regina, G. De Martion, & MArtico. (2003).
Simple,potent,and selective pyrrole inhibitors of monoamine oxidase types A and
B. J.med chem., 46, 917-920. http://dx.doi.org/10.1021/jm0256124 Prashant K.
Jain, Ivan H. El-Sayed, & Mostafa A. El-Sayad. (2007). Au Nanoparticles
target. Cancer, Nanotoday, 2(1), 18-29.
http://dx.doi.org/10.1016/S1748-0132(07)70016-6 Satyanarayna U. (2003).
Biochemistry 2nd ed, Books and Allied (P) LTD, India, pp 91-94. S. Barcikowski,
A. Menendez-Manjon, & B. Chichkov. (2007). Generation of nanoparticle
colloids by picosecond and femtosecond laser ablations in liquid flow. Applied
Physics Letters, 91, 083113. http://dx.doi.org/10.1063/1.2773937 S. Besner,
A.V. Kabashin, & M. Meunier. (2007). Two-step femtosecond laser
ablation-based method for the synthesis of stable and ultra-pure gold nanoparticles
in water. Appl. Phys., A88, 269–272.
http://dx.doi.org/10.1007/s00339-007-4001-1 Tkachenko AG, Xie H, Coleman D,
Glomm W, Ryan J, Anderson MF, Franzen S, & Feldheim DL. (2003).
Multifunctional Gold Nanoparticle- Peptide Complexes for Nuclear Targeting. J
Am Chem Soc., 125, 4700-4701. http://dx.doi.org/10.1021/ja0296935 Y. Fong, J.
R. Gascooke, B. R. Visser, G.F. Metha, & M. A. Buntine. (2010). Laser-Based
Formation and Properties of Gold Nanoparticles in Aqueous Solution: Formation
Kinetics and Surfactant-Modified Particle Size Distributions. J. Phys. Chem. C,
114, 15931–15940. http://dx.doi.org/10.1021/jp9118315
0 komentar:
Posting Komentar