Social Icons

Pages

Kamis, 16 Maret 2017

TUGAS 1 (PENGANTAR KOMPUTASI MODERN)

Subjek Jurnal   : The Effects of Gold and Silver Nanoparticles on Choline Estrase and Monoamino        Oxidase Enzymes Activities

Inti Pembahasan
·        Pembahasan Nanopartikel emas dan perak koloid
·        Efek dari mas dan perak nanopartikel dipelajari pada kegiatan kolin esterase (ChE) dan monoaminooksidase (MAO) enzim dalam serum
Metode Yang Digunakan
Metode yang digunakan pada jurnal ini adalah metode Ellman pada kegiatan acetylcholinesterase dan metode Cohen pada kegiatan Mono aktivitas oksidase amino Prinsip metode ini pengukuran benzaldehida yang diperoleh reaksi yang diserap pada panjang gelombang 242 nm setelah ekstraksi denga sikloheksana.
Kelebihan Metode
·        Menentukan nilai parameter kisi yang teliti
·        Metode perhitungan yang lebih akurat
·        Ketika kita ingin mengukur cenderung bersifat stabil
Kekurangan Metode
·        Sulitnya menentukan rentang waktu pemberian tes
Kegiatan Mono aktivitas oksidase amino
Kegiatan MAO diukur dalam serum manusia dengan menggunakan metode yang sama dengan mengganti 750 uL MAO penyangga solusi dengan 500 mL MAO penyangga 250 uL berbagai konsentrasi nanopartikel.
Kegiatan Acetylcholinesterase
Prosedur pengujian dijelaskan dalam tabel ini

Sumber

 Pyatenko, M. Yamaguchi, & M. Suzuki. (2009). Mechanisms of Size Reduction of Colloidal Silver and Gold Nanoparticles Irradiated by, Nd: YAG Laser. J. Phys. Chem., 113, 9078–9085. Balgiz W.kamas. (2001). M.sc. thesis, college of science, Al-Mustansirya university. Ballantyne B., & Marrs T.C. (1992). clinical and experimental toxicology of organophosphatase and carbamates Butteworth-Heinemann. Oxford. Bhupendra Chudasama. Anjana K.Vala., Nidhi Andhariya.R.V.Mehta., & R.V.Updhyay. (2010). Highly bacterial resistant silver nanoparticles:synthesis and antibacterial activities, J.Nanopat Res., 10, January. Brigger, I., C. Dubernet, & P. Couvreur. (2002). Nanoparticles in cancer therapy and diagnosis Adv. Drug Delivery. Rev.54:631-651C.W.Abell, & S. W. Kwan. (2001). molecular characterization of monoamine oxidases A and B, Prog.Nucleic acid Res.Mol.Biol., 65, 129-156. C. Binda, P. N. Vision, F. Hubalek, D. E. Edmondson, & A. Matteri. (2002). Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders, Nat. struct. Biol., 9, 1-5. http://dx.doi.org/10.1038/nsb0102-1 www.ccsenet.org/ijc International Journal of Chemistry Vol. 3, No. 4; December 2011 Published by Canadian Center of Science and Education 65 Ellman G.L., Courtney K.P., Andres V., & Feather Stone R.M. (1961). Biochem. Pharmacol, Vol.7, pp. 88-91. http://dx.doi.org/10.1016/0006-2952(61)90145-9 F. Mafune, J. Kohno, Y. Takeda, & T. Kondow. (2002). Full Physical Preparation of Size-Selected Gold Nanoparticles in Solution: Laser Ablation and Laser-Induced Size Control. American Chemical Society., 106, 7575-7578. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, & West JL. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS, 100, 13549-13554. http://dx.doi.org/10.1073/pnas.2232479100 Huang YJ, Huang Y, Baldassarre H, Wang B, Lazaris A, Leduc M, Bilodeau AS, Bellemare A, Côté M, Herskovits P, Touati M, Turcotte C, Valeanu L, Lemée N, Wilgus H, Bégin I, Bhatia B, Rao K, Neveu N, Brochu E, Pierson J, Hockley DK, Cerasoli DM, Lenz DE, Karatzas CN, & Langermann S. (August 2007). Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning. Proc. Natl. Acad. Sci., U.S.A., 104(34), 13603-8. http://dx.doi.org/10.1073/pnas.0702756104 J.L. Elechiguerra, J.L. Burt, & J.R. Morones. (2005). Interaction of silver nanoparticles with HIV-I. Journal of Nanobiotechnology, 6(3), 1-10. Mansour M. Mahmmed. (2000). M.Sc. thesis, college of science, Al- Mustansiriya University. M. Charles, J.R. Mcewen, & J.D. cohen. (1963). J.Lab and Clin. Med, 62, 766. Moussa B H Youdim1, & Y S Bakhle. (2006). Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol. January, 147(S1), S287–S296. M.P. Kutyreva, E.P. Medyntseva, et al. (2001). Kinetic parameters of choline estrase catalyzed hydrolysis in the presence of the antigen-antibody immune complex. Russian Journal of general chemistry, 71(1), 329-338. M. Raffi. F. Hussain, T. M. Bhatti, J. I. Akter, A. Hameed, & M. M. Hasan. (2008). Antibacterial Characterization of Silver Nanoparticles against E.Coli ATCC-15224. J.Mater. Sci. Technol., 24(2), 192-196. Mulvaney P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12, 788-800. http://dx.doi.org/10.1021/la9502711 Nam Jm, Thaxton CS, & Mirkin CA. (2003). Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, 301, 184-16. N.V. Tarasenko, A.V. Butsen, E.A. Nevar, & N.A. Savastenko. (2006). Synthesis of nanosized particles during laser ablation of gold in water. Applied Surface Science, 252, 4439–4444. http://dx.doi.org/10.1016/j.apsusc.2005.07.150 O.R. Musaev, A.E. Midgley, J.M. Wrobel, & M.B. Kruger. (2010) Laser ablation of alumina in water. Chemical Physics Letters, 487, 81–83. http://dx.doi.org/10.1016/j.cplett.2010.01.011 P.H.Seeburg, R. Silvestri, G.La Regina, G. De Martion, & MArtico. (2003). Simple,potent,and selective pyrrole inhibitors of monoamine oxidase types A and B. J.med chem., 46, 917-920. http://dx.doi.org/10.1021/jm0256124 Prashant K. Jain, Ivan H. El-Sayed, & Mostafa A. El-Sayad. (2007). Au Nanoparticles target. Cancer, Nanotoday, 2(1), 18-29. http://dx.doi.org/10.1016/S1748-0132(07)70016-6 Satyanarayna U. (2003). Biochemistry 2nd ed, Books and Allied (P) LTD, India, pp 91-94. S. Barcikowski, A. Menendez-Manjon, & B. Chichkov. (2007). Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Applied Physics Letters, 91, 083113. http://dx.doi.org/10.1063/1.2773937 S. Besner, A.V. Kabashin, & M. Meunier. (2007). Two-step femtosecond laser ablation-based method for the synthesis of stable and ultra-pure gold nanoparticles in water. Appl. Phys., A88, 269–272. http://dx.doi.org/10.1007/s00339-007-4001-1 Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, & Feldheim DL. (2003). Multifunctional Gold Nanoparticle- Peptide Complexes for Nuclear Targeting. J Am Chem Soc., 125, 4700-4701. http://dx.doi.org/10.1021/ja0296935 Y. Fong, J. R. Gascooke, B. R. Visser, G.F. Metha, & M. A. Buntine. (2010). Laser-Based Formation and Properties of Gold Nanoparticles in Aqueous Solution: Formation Kinetics and Surfactant-Modified Particle Size Distributions. J. Phys. Chem. C, 114, 15931–15940. http://dx.doi.org/10.1021/jp9118315

0 komentar:

Posting Komentar

 

Sample text

Sample Text


Sample Text

 
Blogger Templates